

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			0620/23
Paper 2			May/June 2010
			1 hour 15 minutes
Candidates ans	swer on the Question Paper.		
No Additional M	laterials are required.		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may need to use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
Total	

This document consists of 15 printed pages and 1 blank page.

1 The diagram shows part of the Periodic Table. Only some of the elements are shown.

For Examiner's Use

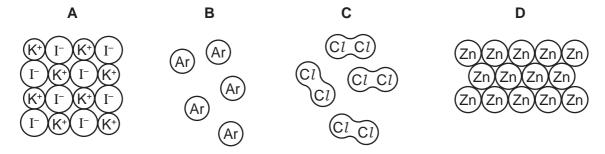
Li			
Na	Mg		
K	Ca	Ti	٧
		Zr	Nb

(a)	Answer the	following	questions	by	choosing	only	from	the	elements	shown	in	the
	diagram.											

You can use each element once, more than once or not at all.

	(i)	State the names of two transition elements shown in the diagram.	
		and	[2]
((ii)	State the name of an element which is in Period 3 of the Periodic Table.	
			[1]
(i	ii)	Which element has the electronic structure 2,8,1?	
			[1]
(i	v)	Which element has the fastest reaction with water?	
			[1]
((v)	Which element has 23 protons in its nucleus?	
			[1]
(b)		dium reacts with oxygen to form sodium peroxide, Na_2O_2 . mplete the symbol equation for this reaction.	
		Na + \rightarrow Na ₂ O ₂	

[2]


[Total: 8]

2 The list describes five types of chemical structures.

For Examiner's Use

giant covalent giant ionic metallic simple atomic simple molecular

(a) The diagrams below show four types of chemical structures.

(i) Use the list to match these structures with the diagrar

structure A is	[1]
structure B is	[1]
structure C is	[1]
structure D is	[1]

(ii) Which **two** of the structures **A**, **B**, **C** or **D** have low melting points?

	and	[1]
--	-----	-----

(b) Sodium chloride is an ionic solid.

Complete the following sentences using words from the list.

	electrons	ionic	molecular	moiten	Solia	
Sodiur	m chloride does	not conduct	t electricity when	it is a		
becau	se the ions canno	ot move. Wh	en it is	s	odium chloride does	
condu	ct electricity beca	ause the ions	are free to move		[2]	

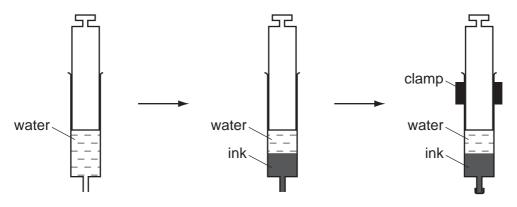
[Total: 7]

[Total: 10]

4

3	Water i	is an important raw material in industry.	
	(a) Sta	ate one use of water in industry.	
	••••		[1]
	(b) De	escribe a chemical test for water.	
	tes	st	
	res	sult	[2]
		small piece of potassium was placed in a beaker of water. ne equation for the reaction is	
		$2K(s) + 2H_2O(l) \rightarrow 2KOH(aq) + H_2(g)$	
	(i)	Describe a test for the gas given off in this reaction.	
		test	
		result	[2]
	(ii)	What is the most likely pH of the solution in the beaker when the reaction complete? Put a ring around the correct answer.	is
		pH2 pH6 pH7 pH8 pH12	[1]
	(d) Wa	ater is formed when propane burns.	
	(i)	Complete the equation for this reaction.	
		$C_3H_8 + 5O_2 \rightarrow \dots CO_2 + \dots H_2O$	[2]
	(ii)	Which of the following best describes this reaction? Put a ring around the correct answer.	
		carbonisation combustion dehydration hydrogenation	[1]
	(iii)	When 4.4 g of propane are burnt in excess oxygen, 7.2 g of water are formed. Calculate the mass of water formed when 22 g of propane are burnt.	
			[1]

For


Examiner's

Use

4 A student half-filled a syringe with water.

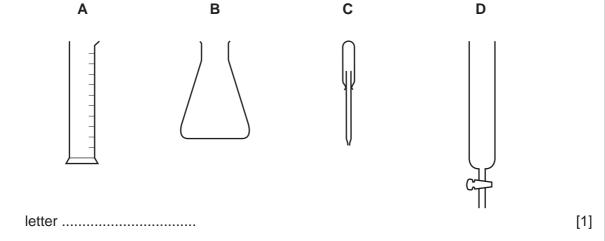
She then carefully drew up some blue ink into the syringe so that it formed a separate layer below the water.

She then left the syringe in a clamp for twenty hours.

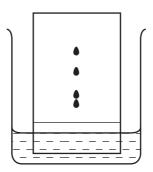
After twenty hours the blue colour of the ink had spread throughout the water.

(a)	Use	e the kinetic particle theory to	o explain these observations.	
				· • • •
				[2]
(b)		is a mixture of many chemic at do you understand by the		
				[1]
(c)	The	e list shows some of the sub-	stances present in ink.	
			carboxylic acids cobalt(II) ions ethanol iron(II) ions nickel(II) ions tannins water	
	(i)	Water is a good solvent. From the list choose one o	ther substance that is a good solvent.	
				[4]

© UCLES 2010 0620/23/M/J/10 **[Turn over**


	•
(ii)	What is the meaning of the symbol (II) in iron(II)? Tick one box.
	the number of outer shell electrons
	the difference between the neutron and proton number
	the oxidation state
	the type of isotope
	[1]
(iii)	Tannins are polymers. What do you understand by the term <i>polymer</i> ?
	[2]
	e of the carboxylic acids present in ink is gallic acid. e structure of gallic acid is shown below.
	НООН
(i)	On the structure above, put a ring around the carboxylic acid functional group. [1]
(ii)	Gallic acid is a good reducing agent. What do you understand by the term <i>reduction</i> ?
	[1]
	[Total: 9]

5	A student wants to separate the coloured pigments in a plant leaf by chromatography
	He grinds the plant leaf and separates the solids from the green solution.

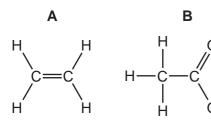

(a)	What method can he use to separate the solids from the solution?

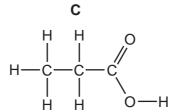
(b) The student takes a drop of the green solution and puts a spot of it onto a piece of chromatography paper.

From the diagrams below choose the letter for the most suitable piece of apparatus for this task.

- **(c)** The student sets up the chromatography apparatus as shown.
 - (i) Label the diagram to show:
 - the solvent,
 - the original position of the spot of green solution,
 - the chromatography paper.

[3]


(ii) How many different pigments were present in the plant leaf?


......[1

© UCLES 2010 0620/23/M/J/10 **[Turn over**

(d) The structure of some organic compounds found in plant leaves are shown below.

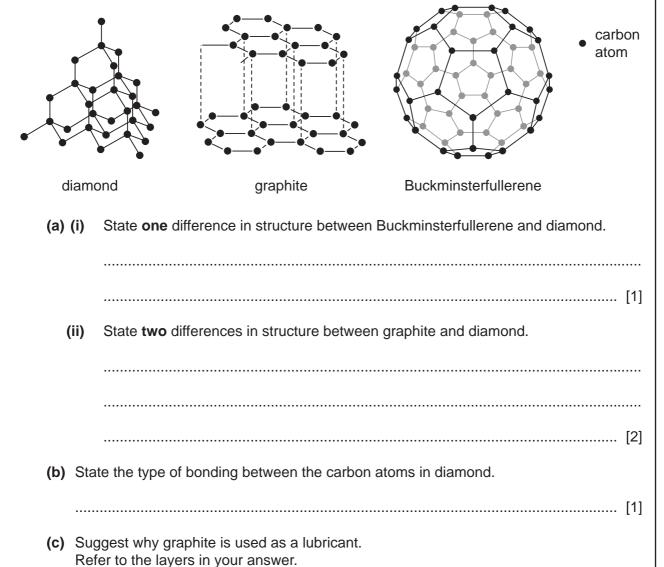
For Examiner's Use

[Total: 12]

(1)	Which one of these compounds is an unsaturated hydrocarbon?	
		[1]
(ii)	Describe a chemical test for an unsaturated hydrocarbon.	
	test	
	result	[2]
(iii)	What do you understand by the term <i>hydrocarbon</i> ?	
		[1]
(iv)	State the name of compound B .	
		[1]
(v)	To which homologous series does compound D belong?	
		[1]

For

9

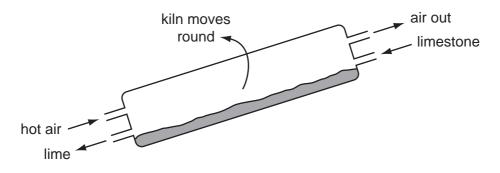

			e characteristic of metals	
				[2]
b) To	which Grou	p in the Periodic Table o	loes lead belong?	
				[1]
Co of l	mplete the tlead.	ead has the mass numb table to show the number dic Table to help you.	per 208. er of subatomic particles ir	n an atom of this isotope
		type of particle	number of particles	
		electrons		
		protons		
		neutrons		
-		neated in oxygen, lead(I equation for this reation.	I) oxide is formed.	[3]
Wr 	rite a word e	quation for this reation.	I) oxide is formedbon, lead and carbon mor	[1]
Wr 	rite a word e	quation for this reation. oxide is heated with car		[1]
Wr 	rite a word e	quation for this reation. oxide is heated with car	bon, lead and carbon mor → Pb + CO	[1]
Wr e) Wh	rite a word e	oxide is heated with car PbO + C estance becomes oxidise	bon, lead and carbon mor → Pb + CO	noxide are formed.
Wr e) Wh	rite a word e hen lead(II) Which sub	oxide is heated with car PbO + C estance becomes oxidise onoxide is a covalent core of these statements ab	bon, lead and carbon mor → Pb + CO ed during this reaction?	[1] noxide are formed.
e) Wh	which sub Carbon m Which one Tick one b	oxide is heated with car PbO + C estance becomes oxidise onoxide is a covalent core of these statements ab	bon, lead and carbon mor → Pb + CO ed during this reaction? ompound. bout carbon monoxide is continuous continuous carbon.	[1] noxide are formed.
e) Wh	which sub Carbon m Which one Tick one b	oxide is heated with car PbO + C estance becomes oxidise conoxide is a covalent core of these statements aboox.	bon, lead and carbon mor → Pb + CO ed during this reaction? mpound. pout carbon monoxide is concept to the	[1] noxide are formed.
e) Wh	which sub Carbon m Which one Tick one b	oxide is heated with car PbO + C estance becomes oxidise onoxide is a covalent core of these statements aboox. solid with a high melting	bon, lead and carbon mor → Pb + CO ed during this reaction? ompound. oout carbon monoxide is concepted by the concepted	[1] noxide are formed.
e) Wh	tite a word e hen lead(II) Which sub Carbon m Which one Tick one b It is a It cone	oxide is heated with car PbO + C estance becomes oxidise onoxide is a covalent core of these statements abox. solid with a high melting ducts electricity when it is	bon, lead and carbon mor → Pb + CO ed during this reaction? mpound. pout carbon monoxide is concept to the	[1] noxide are formed.

10

BLANK PAGE

7 Three forms of carbon are diamond, graphite and Buckminsterfullerene.

For Examiner's Use


.....

	12	
(e)	Coal is a fuel containing carbon. When coal is burnt, carbon dioxide is produced. Explain how the increase in carbon dioxide concentration in the atmopshere affects the world's climate.	For Examiner's Use
	[2]	
(f)	Coal also contains small amounts of sulfur. Explain how burning coal leads to acid rain.	
	[2]	
(g)	Methane is a fuel.	
	(i) Which one of the following is a natural source of methane? Tick one box.	
	waste gases from respiration in plants	
	waste gases from digestion in animals	
	gases from photosynthesis in plants	
	gases from forest fires	
	[1]	

(ii)	Draw a diagram to show the arrangement of the electrons in a molecule of methane, CH_4 .
	Use ● for an electron from a carbon atom × for an electron from a hydrogen atom
	[1]
(iii)	Methane belongs to the alkane homologous series. Name one other alkane.
	[1]
	[Total: 13]

8 The diagram shows a rotary kiln used to make lime from limestone. Limestone is fed in at the top of the kiln and lime comes out at the bottom.

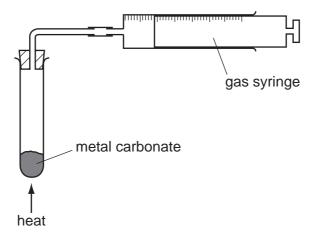
(a)	What is	the	chemical	name	for	lime?
-----	---------	-----	----------	------	-----	-------

......[1]

(b) State the name of the type of chemical reaction that takes place in the rotary lime kiln.

(c) Suggest why the air coming out of the rotary kiln has a greater percentage of carbon

dioxide than the air entering the kiln.


......[1]

......[1]

(d) State one use for lime.

.....[1]


(e) A student compared the speed of reaction of three metal carbonates. She measured the volume of gas released using the apparatus shown.

State one thing that must be kept constant if the speeds of these reactions are to be compared in a fair way.

(f) The graph shows the volume of carbon dioxide released when the three metal carbonates are heated.

For Examiner's Use

[Total: 12]

are present in calcium carbonate.

DATA SHEET
The Periodic Table of the Elements

	0	4 He Helium	20 Neon 10 Af Ar Argon	8 X	Krypton 36	Xe Xenon Xenon 54	Rn Radon		175 Lu Lutetium 71	Lr Lawrendum 103
			19 Fluorine 9 35.5 C1		Bromine 35	127 I lodine	At Astatine 85		173 Yb Ytterbium 70	Nobelium 102
	I>		16 Oxygen 8 32 Sulfur Sulfur	% Se	Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Tm Thulium 69	Md Mendelevium 101
	>		Nitrogen 7 31 Phosphorus	75 As	Arsenic 33	Sb Antimony 51	209 Bi Bismuth		167 Er Erbium 68	Fm Fermium 100
	2		12 Carbon 6 Carbon 8 Silicon Silicon		Germanium 32	Sn Tin 50	207 Pb Lead		165 Ho Holmium 67	Es Einsteinium 99
	Ш		11 B Boron 5 27 A1 Aluminium	30 Ga	Gallium 31	115 In Indium 49	204 T 1 Thallium 81		162 Dy Dysprosium 66	
				es Zn	Zinc 30	Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	BK Berkelium 97
				⁵⁰ 20	Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	Curium Ourium
Group				²⁸	Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Americium
G				₆₈ 8	Cobalt 27	103 Rhodium 45	192 Ir Iridium 77		Sm Samarium 62	
		T Hydrogen		56 Fe	Iron 26	Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Np Neptunium 93
				ss Mn	Manganese 25	Tc Technetium 43	186 Re Rhenium 75		144 Neodymium 60	
				cr Cr	Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium 59	Pa Protactinium 91
				51	Vanadium 23	Nobium 41	181 Ta Tantalum		140 Ce Cerium	232 Th Thorium
				88 Ë	Titanium 22	2 r Zirconium 40	178 Hf Hafnium 72			nic mass bol nic) number
				Sc ₄₅	Scandium 21	89 Y Yttrium 39	139 La Lanthanum 57 *	227 AC Actinium 89	series series	 a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		Beerylium 4 Berylium 24 Mg Magnesium	6 Ca	Calcium 20	Sr Strontium 38	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series	в Х а
	_		Li Lithium 3 23 Na Sodrum	® ¥	Potassium 19	Rubidium 37	133 Cs Caesium 55	Francium 87	*58-71 L	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.